114 research outputs found

    Stable Hybrid Fuzzy Controller-based Architecture for Robotic Telesurgery Systems

    Get PDF
    Robotic surgery and remotely controlled teleoperational systems are on the rise. However, serious limitations arise on both the hardware and software side when traditional modeling and control approaches are taken. These limitations include the incomplete modeling of robot dynamics, tool–tissue interaction, human– machine interfaces and the communication channel. Furthermore, the inherent latency of long-distance signal transmission may endanger the stability of a robot controller. All of these factors contribute to the very limited deployment of real robotic telesurgery. This paper describes a stable hybrid fuzzy controller-based architecture that is capable of handling the basic challenges. The aim is to establish high fidelity telepresence systems for medical applications by easily handled modern control solution

    Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority

    Get PDF
    The European Food Safety Authority (EFSA) has been involved in the risk assessment of novel foods since 2003. The implementation of the current novel food regulation in 2018 rendered EFSA the sole entity of the European Union responsible for such safety evaluations. The risk assessment is based on the data submitted by applicants in line with the scientific requirements described in the respective EFSA guidance document. The present work aims to elaborate on the rationale behind the scientific questions raised during the risk assessment of novel foods, with a focus on complex mixtures and whole foods. Novel foods received by EFSA in 2003–2019 were screened and clustered by nature and complexity. The requests for additional or supplementary information raised by EFSA during all risk assessments were analyzed for identifying reoccurring issues. In brief, it is shown that applications concern mainly novel foods derived from plants, microorganisms, fungi, algae, and animals. A plethora of requests relates to the production process, the compositional characterization of the novel food, and the evaluation of the product's toxicological profile. Recurring issues related to specific novel food categories were noted. The heterogeneous nature and the variable complexity of novel foods emphasize the challenge to tailor aspects of the evaluation approach to the characteristics of each individual product. Importantly, the scientific requirements for novel food applications set by EFSA are interrelated, and only a rigorous and cross-cutting approach adopted by the applicants when preparing the respective application dossiers can lead to scientifically sound dossiers. This is the first time that an in-depth analysis of the experience gained by EFSA in the risk assessment of novel foods and of the reasoning behind the most frequent scientific requests by EFSA to applicants is made

    Information theoretic approach to interactive learning

    Full text link
    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.Comment: 6 page

    Determinants of translation efficiency and accuracy

    Get PDF
    A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding

    Optical Design and Characterization of 40-GHz Detector and Module for the BICEP Array

    Get PDF
    Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the cosmic microwave background (CMB). High-sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled transition edge sensor arrays for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands. BICEP array, the latest phase of the BICEP/Keck experiment series, is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision σ(r) between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal. We describe the electromagnetic design and measured performance of BICEP array’s low-frequency 40-GHz detector, their packaging in focal plane modules, and optical characterization including efficiency and beam matching between polarization pairs. We summarize the design and simulated optical performance, including an approach to improve the optical efficiency due to mismatch losses. We report the measured beam maps for a new broadband corrugation design to minimize beam differential ellipticity between polarization pairs caused by interactions with the module housing frame, which helps minimize polarized beam mismatch that converts CMB temperature to polarization (T→P) anisotropy in CMB maps

    Design and Performance of the First BICEP Array Receiver

    Get PDF
    Branches of cosmic inflationary models, such as slow-roll inflation, predict a background of primordial gravitational waves that imprints a unique odd-parity “B-mode” pattern in the Cosmic Microwave Background (CMB) at amplitudes that are within experimental reach. The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio r, by observing the polarized microwave sky through the exceptionally clean and stable atmosphere at the South Pole. B-mode measurements require an instrument with exquisite sensitivity, tight control of systematics, and wide frequency coverage to disentangle the primordial signal from the Galactic foregrounds. BICEP Array represents the most recent stage of the BK program and comprises four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz. The 30/40 GHz receiver will be deployed at the South Pole during the 2019/2020 austral summer. After 3 full years of observations with 30,000+ detectors, BICEP Array will measure primordial gravitational waves to a precision σ(r) between 0.002 and 0.004, depending on foreground complexity and the degree of lensing removal. In this paper, we give an overview of the instrument, highlighting the design features in terms of cryogenics, magnetic shielding, detectors and readout architecture as well as reporting on the integration and tests that are ongoing with the first receiver at 30/40 GHz

    Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole

    Full text link
    BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.Comment: 12 pages, 10 figures; Figure 7 shows the correct fil

    Characterizing the Sensitivity of 40 GHz TES Bolometers for BICEP Array

    Get PDF
    The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the cosmic microwave background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be r_(0.05) < 0.06 at 95% c.l., further improvements on this upper limit are hindered by polarized galactic foreground emissions and removal of gravitational lensing polarization. The 30/40 GHz receiver of the BICEP Array (BA) will deploy at the end of 2019 and will constrain the synchrotron foreground with unprecedented accuracy within the BK sky patch. We will show the design of the 30/40 GHz detectors and test results summarizing its performance. The low optical and atmospheric loading at these frequencies requires our TES detectors to have low saturation power in order to be photon noise dominated. To realize the low thermal conductivity required from a 250 mK base temperature, we developed new bolometer leg designs. We will present the relevant measured detector parameters: G, T_c, R_n, P_(sat), and spectral bands, and noise spectra. We achieved a per bolometer NEP including all noise components of 2.07×10⁻¹⁷ W/√Hz, including an anticipated photon noise level 1.54×10⁻¹⁷W/√Hz
    corecore